首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1139篇
  免费   76篇
  2022年   3篇
  2021年   19篇
  2020年   10篇
  2019年   16篇
  2018年   12篇
  2017年   15篇
  2016年   18篇
  2015年   25篇
  2014年   42篇
  2013年   68篇
  2012年   78篇
  2011年   74篇
  2010年   50篇
  2009年   47篇
  2008年   82篇
  2007年   76篇
  2006年   75篇
  2005年   74篇
  2004年   69篇
  2003年   60篇
  2002年   68篇
  2001年   14篇
  2000年   12篇
  1999年   12篇
  1998年   19篇
  1997年   13篇
  1996年   10篇
  1995年   11篇
  1994年   17篇
  1993年   8篇
  1992年   8篇
  1991年   6篇
  1990年   7篇
  1989年   7篇
  1988年   7篇
  1987年   6篇
  1986年   6篇
  1985年   3篇
  1984年   12篇
  1983年   3篇
  1982年   8篇
  1981年   9篇
  1980年   6篇
  1979年   8篇
  1978年   6篇
  1976年   2篇
  1973年   4篇
  1970年   2篇
  1967年   1篇
  1961年   1篇
排序方式: 共有1215条查询结果,搜索用时 15 毫秒
11.
DNA barcoding using a partial region (648 bp) of the cytochrome c oxidase I (COI) gene is a powerful tool for species identification and has revealed many cryptic species in various animal taxa. In birds, cryptic species are likely to occur in insular regions like the Japanese Archipelago due to the prevention of gene flow by sea barriers. Using COI sequences of 234 of the 251 Japanese‐breeding bird species, we established a DNA barcoding library for species identification and estimated the number of cryptic species candidates. A total of 226 species (96.6%) had unique COI sequences with large genetic divergence among the closest species based on neighbour‐joining clusters, genetic distance criterion and diagnostic substitutions. Eleven cryptic species candidates were detected, with distinct intraspecific deep genetic divergences, nine lineages of which were geographically separated by islands and straits within the Japanese Archipelago. To identify Japan‐specific cryptic species from trans‐Paleartic birds, we investigated the genetic structure of 142 shared species over an extended region covering Japan and Eurasia; 19 of these species formed two or more clades with high bootstrap values. Excluding six duplicated species from the total of 11 species within the Japanese Archipelago and 19 trans‐Paleartic species, we identified 24 species that were cryptic species candidates within and surrounding the Japanese Archipelago. Repeated sea level changes during the glacial and interglacial periods may be responsible for the deep genetic divergences of Japanese birds in this insular region, which has led to inconsistencies in traditional taxonomies based on morphology.  相似文献   
12.
Water‐insoluble glucan (WIG) produced by mutans streptococci, an important cariogenic pathogen, plays an important role in the formation of dental biofilm and adhesion of biofilm to tooth surfaces. Glucanohydrolases, such as mutanase (α‐1,3‐glucanase) and dextranase (α‐1,6‐glucanase), are able to hydrolyze WIG. The purposes of this study were to construct bi‐functional chimeric glucanase, composed of mutanase and dextranase, and to examine the effects of this chimeric glucanase on the formation and decomposition of biofilm. The mutanase gene from Paenibacillus humicus NA1123 and the dextranase gene from Streptococcus mutans ATCC 25175 were cloned and ligated into a pE‐SUMOstar Amp plasmid vector. The resultant his‐tagged fusion chimeric glucanase was expressed in Escherichia coli BL21 (DE3) and partially purified. The effects of chimeric glucanase on the formation and decomposition of biofilm formed on a glass surface by Streptococcus sobrinus 6715 glucosyltransferases were then examined. This biofilm was fractionated into firmly adherent, loosely adherent, and non‐adherent WIG fractions. Amounts of WIG in each fraction were determined by a phenol‐sulfuric acid method, and reducing sugars were quantified by the Somogyi–Nelson method. Chimeric glucanase reduced the formation of the total amount of WIG in a dose‐dependent manner, and significant reductions of WIG in the adherent fraction were observed. Moreover, the chimeric glucanase was able to decompose biofilm, being 4.1 times more effective at glucan inhibition of biofilm formation than a mixture of dextranase and mutanase. These results suggest that the chimeric glucanase is useful for prevention of dental biofilm formation.  相似文献   
13.
Three strains TKU9, TKU49 and TKU50T, were isolated from the oral cavities of chimpanzees (Pan troglodytes). The isolates were all gram‐positive, facultative anaerobic cocci that lacked catalase activity. Analysis of partial 16S rRNA gene sequences showed that the most closely related species was Streptococcus infantis (96.7%). The next most closely related species to the isolates were S. rubneri, S. mitis, S. peroris and S. australis (96.6 to 96.4%). Based on the rpoB and gyrB gene sequences, TKU50T was clustered with other member of the mitis group. Enzyme activity and sugar fermentation patterns differentiated this novel bacterium from other members of the mitis group streptococci. The DNA G + C content of strain TKU50T was 46.7 mol%, which is the highest reported value for members of the mitis group (40–46 mol%). On the basis of the phenotypic characterization, partial 16S rRNA gene and sequences data for two housekeeping gene (gyrB and rpoB), we propose a novel taxa, S. panodentis for TKU 50T (type strain = CM 30579T = DSM 29921T), for these newly described isolates.  相似文献   
14.
Improvements in plant productivity (biomass) and yield have centered on increasing the efficiency of leaf CO2 fixation and utilization of products by non-photosynthetic sink organs. We had previously demonstrated a correlation between photosynthetic capacity, plant growth, and the extent of leaf starch synthesis utilizing starch-deficient mutants. This finding suggested that leaf starch is used as a transient photosynthetic sink to recycle inorganic phosphate and, in turn, maximize photosynthesis. To test this hypothesis, Arabidopsis thaliana and rice (Oryza sativa L.) lines were generated with enhanced capacity to make leaf starch with minimal impact on carbon partitioning to sucrose. The Arabidopsis engineered plants exhibited enhanced photosynthetic capacity; this translated into increased growth and biomass. These enhanced phenotypes were displayed by similarly engineered rice lines. Manipulation of leaf starch is a viable alternative strategy to increase photosynthesis and, in turn, the growth and yields of crop and bioenergy plants.  相似文献   
15.
16.
High-throughput protein production systems have become an important issue, because protein production is one of the bottleneck steps in large-scale structural and functional analyses of proteins. We have developed a dialysis reactor and a fully automated system for protein production using the dialysis cell-free synthesis method, which we previously established to produce protein samples on a milligram scale in a high-throughput manner. The dialysis reactor was designed to be suitable for an automated system and has six dialysis cups attached to a flat dialysis membrane. The automated system is based on a Tecan Freedom EVO 200 workstation in a three-arm configuration, and is equipped with shaking incubators, a vacuum module, a robotic centrifuge, a plate heat sealer, and a custom-made tilting carrier for collection of reaction solutions from the flat-bottom cups with dialysis membranes. The consecutive process, from the dialysis cell-free protein synthesis to the partial purification by immobilized metal affinity chromatography on a 96-well filtration plate, was performed within ca. 14 h, including 8 h of cell-free protein synthesis. The proteins were eluted stepwise in a high concentration using EDTA by centrifugation, while the resin in the filtration plate was washed on the vacuum manifold. The system was validated to be able to simultaneously and automatically produce up to 96 proteins in yields of several milligrams with high well-to-well reliability, sufficient for structural and functional analyses of proteins. The protein samples produced by the automated system have been utilized for NMR screening to judge the protein foldedness and for structure determinations using heteronuclear multi-dimensional NMR spectroscopy. The automated high-throughput protein production system represents an important breakthrough in the structural and functional studies of proteins and has already contributed a massive amount of results in the structural genomics project at the RIKEN Structural Genomics/Proteomics Initiative (RSGI).  相似文献   
17.
Dendritic cells (DCs) are essential antigen-presenting cells for the induction of T cell immunity against HIV. On the other hand, due to the susceptibility of DCs to HIV infection, virus replication is strongly enhanced in DC–T cell interaction via an immunological synapse formed during the antigen presentation process. When HIV-1 is isolated from individuals newly infected with the mixture of R5 and X4 variants, R5 is predominant, irrespective of the route of infection. Because the early massive HIV-1 replication occurs in activated T cells and such T-cell activation is induced by antigen presentation, we postulated that the selective expansion of R5 may largely occur at the level of DC–T cell interaction. Thus, the immunological synapse serves as an infectious synapse through which the virus can be disseminated in vivo. We used fluorescent recombinant X4 and R5 HIV-1 consisting of a common HIV-1 genome structure with distinct envelopes, which allowed us to discriminate the HIV-1 transmitted from DCs infected with the two virus mixtures to antigen-specific CD4+ T cells by flow cytometry. We clearly show that the selective expansion of R5 over X4 HIV-1 did occur, which was determined at an early entry step by the activation status of the CD4+ T cells receiving virus from DCs, but not by virus entry efficiency or productivity in DCs. Our results imply a promising strategy for the efficient control of HIV infection.  相似文献   
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号